100% PROJECT MANUAL

COMMERCE 2.0 MGD GROVE CREEK WPCP

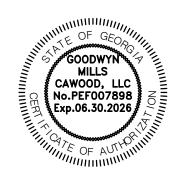
COMMERCE, GEORGIA

for

CITY OF COMMERCE

BID DOCUMENTS

March 2025



Prepared By

Goodwyn Mills Cawood, LLC 6120 Powers Ferry Road NE Suite 200 Atlanta, GA 30339 T: 770.952.2481 www.gmcnetwork.com

GMC PROJECT NUMBER: CATL230033

OWNERSHIP OF DOCUMENTS AND DISCLAIMER

The Project Manual, Technical Specifications, Drawings, and all other documents relating to this project have been prepared for this individual and particular project, and for the exclusive use of the original Owner, developer or other party so indicated.

Actual project conditions and as-built conditions may vary significantly. Changes made during bidding, negotiations, construction, due to additions or deletions of portions of this project, and/or for other reasons, may not be indicated in these documents.

These documents may not be used or relied upon as a certification of information indicated, or used for any other project, by any third parties or other parties, for any purpose whatsoever, without the prior written consent of Goodwyn Mills Cawood, LLC, or prior to receipt of mutually agreed to compensation paid to Goodwyn Mills Cawood, LLC, therefor.

The ownership, copyrights, and all other rights to these documents, are reserved by Goodwyn Mills Cawood, LLC, including in part, all copies thereof in any form or media. Reproduction of the material contained in these documents or substantial quotation of their provisions without prior written permission of Goodwyn Mills Cawood, LLC, violates the copyright and common laws of the United States and will subject the violator to legal prosecution.

> Goodwyn Mills Cawood, LLC Post Office Box 242128 Montgomery, AL 36124-2128 and Birmingham, Alabama Andalusia, Alabama Auburn, Alabama Daphne, Alabama Eufaula, Alabama Huntsville, Alabama Huntsville, Alabama Vernon, Alabama Vernon, Alabama Lutz, Florida Orlando, Florida Pensacola, Florida

Sarasota, Florida Tampa, Florida Atlanta, Georgia Augusta, Georgia Brunswick, Georgia Cartersville, Georgia Savannah, Georgia New Orleans, Louisiana Charlotte, North Carolina Charleston, South Carolina Greenville, South Carolina Brentwood, Tennessee Nashville, Tennessee

 $\label{eq:architecture} ARCHITECTURE \verb"end on the second second$

COMMERCE 2.0 MGD GROVE CREEK WATER POLLUTION CONTROL PLANT

FOR

CITY OF COMMERCE

COMMERCE, GEORGIA

GMC PROJECT NO. CATL230033

TABLE OF CONTENTS

SECTION	TITLE
DIVISION 00 – PRO	CUREMENT AND CONTRACTING REQUIREMENTS
00 10 00	Advertisement for Bids
00 20 00	Instructions to Bidders
00 25 00	Instructions for Submitting Bid Proposals
00 32 00	Information Available to Bidders
00 32 00	Grove Creek WPCP - Geotechnical Report
00 41 13	Bid Form
00 43 13	Bid Bond
00 45 13	Qualifications Statement
00 48 00	Noncollusion Affidavit
00 49 00	Immigration and Security Form
00 51 00	Notice of Award
00 52 13	Agreement between Owner and Contractor for Construction Contract
00 55 00	Notice to Proceed
00 61 13.13	Performance Bond
00 61 13.15	Payment Bond
00 62 76	Application for Payment
00 63 63	Change Order
00 65 16	Certificate of Substantial Completion
00 72 00	General Conditions of the Contract for Construction
00 73 00	Supplementary Conditions
00 85 00	GEFA-SRF-Supplemental - General-Conditions
00 85 50	SLFRF ARPA - Water Sewer Infrastructure Terms and Conditions

DIVISION 01 – GENERAL REQUIREMENTS

01 10 00	Summary
01 15 00	Measurement and Payment
01 21 00	Allowances
01 26 00	Contract Modification Procedures
01 29 00	Payment Procedures
01 29 00A	Contractor Progress Lien Waiver
01 29 00B	Subcontractor Progress Lien Waiver
01 31 00	Project Management and Coordination
01 32 00	Construction Progress Documentation
01 32 33	Photographic Documentation
01 33 00	Submittal Procedures
01 40 00	Quality Requirements
01 42 00	References
01 50 00	Temporary Facilities and Controls
01 60 00	Product Requirements
01 70 00	Execution and Closeout Requirements
01 78 23	Operation and Maintenance Data
01 78 39	Project Record Documents
01 79 00	Demonstration and Training
01 81 00	Geotechnical Data

DIVISION 02 – (NOT USED)

DIVISION 03 – CONCRETE

03 20 00	Anchorage in Concrete
03 30 00	Cast-in-Place Concrete
03 39 00	Concrete Curing
03 60 00	Grouting

DIVISION 04 – MASONRY

04 00 10 Unity Masonry Assemblies

DIVISION 05 – METALS

05 12 00	Structural Steel
05 35 15	Cold-Formed Metal Framing
05 40 00	Aluminum Handrail

05 50 00	Metal Fabrications
05 51 19	Metal Grating Stairs
05 52 13	Pipe and Tube Railings
05 53 13	Bar Gratings
05 60 00	Aluminum Hatches

DIVISION 06 – WOOD, PLASTICS, AND COMPOSITES

06 10 53	Miscellaneous Rough Carpentry
06 16 00	Sheathing
06 60 00	FRP Weir Plates, Scum Baffles and Brackets

DIVISION 07 – THERMAL AND MOISTURE PROTECTION

07 21 00	Thermal Insulation
07 41 13	Standing-Seam Metal Roof Panels
07 42 93	Soffit Panels
07 54 23	Thermoplastic-Polyolefin (TPO) Roofing
07 62 00	Sheet Metal Flashing and Trim
07 84 00	Firestopping

07 92 00 Joint Sealants

DIVISION 08 – OPENINGS

08 11 13	Hollow Metal Doors and Frames
08 51 13	Aluminum Windows
08 71 00	Door Hardware

DIVISION 09 – FINISHES

09 22 16Non-Structural Metal Framing09 29 00Gypsum Board09 51 13Acoustical Panel Ceilings09 96 00High-Performance Coatings

DIVISION 10 – SPECIALTIES

10 14 00 Signage

DIVISION 11 - 12 - (NOT USED)

DIVISION 13 – SPECIAL CONSTRUCTION

13 10 00	Bypass Pumping
13 31 00	Fiberglass Reinforced Building Enclosure
13 34 23.11	Fabricated Electrical Houses

DIVISION 14 – 22 (NOT USED)

DIVISION 23 – HEATING, VENTILATING, AND AIR CONDITIONING (NOT USED)

DIVISION 24 – 25 (NOT USED)

DIVISION 26 – ELECTRICAL

26 05 00	Common Work Results for Electrical
26 05 19	Conductors
26 05 26	Grounding and Bonding
26 05 33	Raceways and Boxes
26 05 73	Short Circuit/Coordination Study
26 22 13	Low Voltage Transformers
26 24 16	Panelboards
26 27 26	Wiring Devices
26 28 11	Molded Case Circuit Breakers
26 28 16	Safety Switches
26 29 23	Variable Frequency Drives
26 32 13	Generators
26 35 26	Active Harmonic Filter
26 36 23	Automatic Transfer Switches
26 50 00	Lighting

DIVISON 27 – COMMUNICATIONS

27 05 26	Grounding and Bonding for Communications Systems
27 05 28	Pathways for Communications Systems
27 05 28.29	Hangers and Supports for Communications Systems
27 11 00	Communications Equipment Room Fittings
27 13 23	Communications Optical Fiber Backbone Cabling
27 15 13	Communications Copper Horizontal Cabling
27 15 23	Communications Optical Fiber Horizontal Cabling

DIVISION 28 – 30 (NOT USED)

DIVISION 31 – EARTHWORK

31 10 00 Site Clearing	
31 20 00Earth Moving	
31 23 16.13 Excavation and Trenching	
31 23 16.26 Rock Removal	
31 23 19Dewatering	
31 25 00Erosion and Sedimentation Controls	
31 50 00Excavation Support and Protection	

DIVISION 32 – EXTERIOR IMPROVEMENTS

32 05 19	Geosynthetics for Exterior Improvements
32 12 16	Asphalt Paving
32 13 13	Concrete Paving
32 31 13	Chain Link Fence and Gates
32 91 13	Soil Preparation
32 92 00	Turf and Grasses
32 92 19	Seeding and Restoration

DIVISION 33 – UTILITIES

33 01 30.13	Sewer and Manhole Testing
33 01 30.51	Pumping and Bypassing
33 01 30.61	Sewer and Pipe Joint Sealing
33 01 30.62	Manhole Grout Sealing
33 05 05.31	Hydrostatic Testing
33 05 13	Manholes and Structures
33 05 16.13	Precast Concrete Utility Structures
33 05 26	Utility Identification
33 31 00	Sanitary Utility Sewerage Piping
33 41 13	Public Storm Utility Drainage Piping

DIVISION 34 – 39 (NOT USED)

DIVISION 40 – PROCESS INTERCONNECTIONS

40 05 06	Couplings Adapters Specials for Process Piping
40 05 07	Hangers and Supports for Process Piping

40 05 13	Common Requirements for Process Piping
40 05 19	Ductile Iron Process Pipe
40 05 23	Stainless Steel Process Pipe and Tubing
40 05 31	Thermoplastic Process Pipe
40 05 51	Common Requirements for Process Valves
40 05 53	Identification for Process Piping
40 05 57	Actuators for Process Valves and Gates
40 05 59	Aluminum Slide Gates
40 05 62	Plug Valves
40 05 63	Ball Valves
40 05 64	Butterfly Valves
40 05 65.23	Swing and Disc Check Valves
40 05 78.21	Air Release Valves for Wastewater Service
40 42 13	Process Piping Insulation
40 70 00	Instrumentation Devices
40 71 13	Magnetic Flow Meters
40 71 69	Parshall Flume
40 72 13	Ultrasonic Level Meters
40 72 43.00	Pressure and Differential Pressure Type Level Meters
40 72 76	Level Switches
40 73 13	Pressure & Differential Pressure Gauges
40 73 64	Annular Pressure Seals
40 75 00	Refrigerated Auto Sampler
40 75 13	PH ORP Sensors
40 75 43	Fluorescent Dissolved Oxygen Measuring
40 90 00	Instrumentation and Control for Process Systems
40 94 03	Programmable Logic Controller Subsystem (PLCS)

DIVISION 41 - MATERIAL PROCESSING & HANDLING EQUIP

- 41 15 13 Chemical IBC Tote Scale
- 41 22 14 Jib Cranes
- 41 22 24 Electrified Monorail Hoist

DIVISION 42 (NOT USED)

DIVISION 43 – PROCESS GAS AND LIQUID HANDLING, PURIFICATION AND STORAGE EQUIPMENT

43 23 13	Reuse Vertical Turbine Pumps
43 25 13	Submersible Centrifugal Pumps
43 26 13	Submersible Chopper Pumps
43 41 46	Polyethylene Tanks and Accessories
43 53 54	Blowers

DIVISION 44 – 45 (NOT USED)

DIVISION 46 – WATER AND WASTEWATER EQUIPMENT

46 05 53	Identification for Water and Wastewater Equipment
46 21 15	Rotary Drum Screens
46 23 23	Grit Removal Equipment
46 33 41	Liquid Chemical Feed Systems
46 33 83	Liquid Chemical Feed Accessories and Safety Equipment
46 41 26	Floating Mechanical Aerators
46 43 21	Circular Secondary Clarifier Equipment
46 51 15	Orbal Aeration System
46 51 16	Submersible Aspirating Aerator Equipment
46 51 23	Fixed Header Aeration System
46 61 23	Disc Cloth Tertiary Filtration
46 66 16	Non-Contact UV Disinfection Equipment
46 73 22	Decanter Assembly
46 76 21	Belt Filter Presses

DIVISION 47 – 48 (NOT USED)

APPENDIX

State of Georgia DNR/EPD NPDES General Permit No. GAR 100001	1 - 48
State of Georgia DNR/EPD NPDES General Permit No. GAR 100002	1 - 50
State of Georgia DNR/EPD NPDES Fact Sheet	1 – 9
State of Georgia DNR/EPD NPDES Fact Sheet Addendum	1 - 2
NPDES General Construction Permit References	1 Page
Grove Creek WPCP – NPDES GA0050355 Draft Permit Package - City – 2025	56 Pages

SECTION 03 20 00 - ANCHORAGE IN CONCRETE

PART 1 - GENERAL

1.1 SUMMARY

A. This section includes the requirements for cast-in-place, mechanical, and adhesive anchors for concrete.

1.2 RELATED DOCUMENTS:

- A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.
- B. Related work specified elsewhere includes:
 - 1. Section 03 30 00 Cast-in-Place Concrete
 - 2. Division 26 Electrical
 - 3. Division 43 Process Gas and Liquid Handling, Purification and Storage Equipment
 - 4. Division 46 Water and Wastewater Equipment

1.3 SUBMITTALS

A. Submit product information to the Engineer for approval in accordance with Section 01 33 00.

PART 2 - PRODUCTS

2.1 WEDGE TYPE ANCHORS

- A. Anchors shall feature a stainless-steel split expansion ring; a threaded stud body; and integral cone expander, nut and washer.
- B. Anchor bodies smaller than 3/4 inch, excluding countersunk anchors, shall be made from AISI 316 and shall have the following minimum bolt fracture loads:

Anchor Diameter (in.)	Minimum Fracture Load (lb)
1/4	2,900
3/8	7,200
1/2	12,400
5/8	21,900

GROVE CREEK

2.0 MGD WPCP

2.2 Anchor bodies 3/4 inch and larger, and all stainless-steel post nut anchor bodies, shall be made from AISI 316 stainless steel and shall have the following minimum mechanical properties:

Anchor Diameter (in.)	Min. Tensile Strength (ksi)	Min. Yield Strength (ksi)
$\leq 5/8$	90	76
≥3/4	76	64

- A. All nuts shall meet the dimensional requirements of ASTM F 594.
- B. Washers shall meet the dimensional requirements of ANSI B18.22.1, Type A, plain.
- C. Expansion sleeve for anchors shall be made from AISI 316. All nuts and washers shall be made from AISI 316.
- D. Anchor size and depth shall be as shown on drawings.
- E. Manufacturers:
 - 1. Trubolt as manufactured by ITW-Redhead, Inc.
 - 2. Kwik Bolt 3 as manufactured by Hilti, Inc.
 - 3. Or equal

2.3 ADHESIVE ANCHOR SYSTEM

- A. Adhesive anchor system shall consist of an injectable two-part epoxy.
- B. Application system shall be in accordance with manufacturer's recommendations. System shall keep the two components separated until application of product directly into drilled hole.
- C. System shall thoroughly blend the two parts by means of a static mixer nozzle.
- D. Injection adhesive shall be formulated to include resin and hardener to provide optimal curing speed as well as high strength and stiffness.
- E. Anchor rods shall be as shown on drawings or as specified in other sections of these specifications.
 - 1. Anchor rods shall be furnished with chamfered ends so that either end will accept a nut and washer.
 - 2. Alternately, anchor rods shall be furnished with a 45° chisel point on one end to allow for easy insertion into the adhesive-filled hole.
- F. Nuts and washers shall be provided for anchor rods in the same material as the anchor rod.
- G. Manufactures
 - 1. HIT RE 500 Epoxy Adhesive Anchor as manufactured by Hilti, Inc.
 - 2. G5 Adhesive Anchoring System as manufactured by ITW-Redhead, Inc.

3. Or equal

2.4 CAST-IN-PLACE ANCHORS BOLTS

- A. Cast-in-place anchors shall be made of corrosion resistant material in accordance with the dimensions shown on drawings.
 - 1. As a minimum, provide ASTM F1554 Grade 36 steel cast-in-place anchors.
 - 2. If anchor bolt size is not shown on drawings, Contractor shall provide anchors capable of providing four (4) times the load applied to the bolt.

PART 3 - EXECUTION

- 3.1 INSTALLATION
- A. Layout anchors before drilling into concrete to ensure proper placement. Following manufacturer's recommendation for spacing of anchors. Notify Engineer of conflicts between existing conditions and requirements by manufacturer.
- B. Install anchors per manufacturer's recommendations.
- C. Embedment length shall be per manufacturer's recommendations for load conditions.
- D. Check all equipment anchors after equipment has operated. Retighten any loose anchors.

END OF SECTION 03 20 00

SECTION 03 30 00 - CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes cast-in-place concrete, including formwork, reinforcement, concrete materials, mixture design, placement procedures, and finishes.
- B. Related Requirements:
 - 1. Section 03 20 00 Anchorage in Concrete
 - 2. Division 31 Earthwork

1.2 DEFINITIONS

- A. Cementitious Materials: Portland cement alone or in combination with one or more of the following: blended hydraulic cement, fly ash, slag cement, other pozzolans, and silica fume; materials subject to compliance with requirements.
- B. W/C Ratio: The ratio by weight of water to cementitious materials.

1.3 PREINSTALLATION MEETINGS

- A. Preinstallation Conference: Conduct conference at Project site.
 - 1. Before submitting design mixtures, review concrete design mixture and examine procedures for ensuring quality of concrete materials. Require representatives of each entity directly concerned with cast-in-place concrete to attend, including the following:
 - a. Contractor's superintendent.
 - b. Independent testing agency responsible for concrete design mixtures.
 - c. Ready-mix concrete manufacturer.
 - d. Concrete Subcontractor.
 - e. Special concrete finish Subcontractor.
 - 2. Review special inspection and testing and inspecting agency procedures for field quality control, concrete finishes and finishing, cold- and hot-weather concreting procedures, curing procedures, construction contraction and isolation joints, and joint-filler strips, vapor-retarder installation, steel reinforcement installation, methods for achieving specified floor and slab flatness and levelness concrete repair procedures, and concrete protection.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

- B. Design Mixtures: For each concrete mixture. Submit alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.
 - 1. Indicate amounts of mixing water to be withheld for later addition at Project site.
- C. Steel Reinforcement Shop Drawings: Placing Drawings that detail fabrication, bending, and placement. Include bar sizes, lengths, material, grade, bar schedules, stirrup spacing, bent bar diagrams, bar arrangement, splices and laps, mechanical connections, tie spacing, hoop spacing, and supports for concrete reinforcement.
- D. Construction Joint Layout: Indicate proposed construction joints required to construct the structure.
 - 1. Location of construction joints is subject to approval of the Engineer.
- E. Samples: For color finishes, normal weight aggregates, fiber reinforcement, reglets, waterstops, vapor retarder/barrier, and form liners.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer and testing agency.
- B. Material Certificates: For each of the following, signed by manufacturers:
 - 1. Cementitious materials.
 - 2. Admixtures.
 - 3. Form materials and form-release agents.
 - 4. Steel reinforcement and accessories.
 - 5. Waterstops.
 - 6. Curing compounds.
 - 7. Floor and slab treatments.
 - 8. Bonding agents.
 - 9. Adhesives.
 - 10. Vapor retarders.
 - 11. Semi-rigid joint filler.
 - 12. Joint-filler strips.
 - 13. Repair materials.
- C. Material Test Reports: From a qualified testing agency.
- D. Formwork Shop Drawings: Prepared by or under the supervision of a qualified professional engineer. Placing drawings indicating fabrication and erection of forms for specific finished concrete surfaces. Show form construction including jointing, special form joints or reveals, location and pattern of form tie placement, and other items that affect exposed concrete visually.
 - 1. Shoring and Reshoring: Indicate proposed schedule and sequence of stripping formwork, shoring removal, and reshoring installation and removal.

- E. Floor surface flatness and levelness measurements indicating compliance with specified tolerances.
- F. Field quality-control reports.
- G. Minutes of preinstallation conference.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: A qualified installer who employs on Project personnel qualified as ACI-certified Flatwork Technician and Finisher and a supervisor who is an ACI-certified Concrete Flatwork Technician.
- B. Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94 requirements for production facilities and equipment.
 - 1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities."
- C. Testing Agency Qualifications: Acceptable to authorities having jurisdiction, qualified according to ASTM C 1077 and ASTM E 329 for testing indicated.
 - 1. Personnel conducting field tests shall be qualified as ACI Concrete Field Testing Technician, Grade 1, according to ACI CP-1 or an equivalent certification program.
 - 2. Personnel performing laboratory tests shall be ACI-certified Concrete Strength Testing Technician and Concrete Laboratory Testing Technician, Grade I. Testing agency laboratory supervisor shall be an ACI-certified Concrete Laboratory Testing Technician, Grade II.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Steel Reinforcement: Deliver, store, and handle steel reinforcement to prevent bending and damage. Avoid damaging coatings on steel reinforcement.
- B. Waterstops: Store waterstops under cover to protect from moisture, sunlight, dirt, oil, and other contaminants.

1.8 FIELD CONDITIONS

- A. Cold-Weather Placement: Comply with ACI 306.1 and as follows. Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing actions, or low temperatures.
 - 1. When average high and low temperature is expected to fall below 40 °F for three successive days, maintain delivered concrete mixture temperature within the temperature range required by ACI 301.

- 2. Do not use frozen materials or materials containing ice or snow. Do not place concrete on frozen subgrade or on subgrade containing frozen materials.
- 3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in mixture designs.
- B. Hot-Weather Placement: Comply with ACI 301 and as follows:
 - 1. Maintain average concrete temperature below 90 °F at time of placement. Maximum concrete temperature at time of placement shall be 95 °F. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated to total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
 - 2. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade uniformly moist without standing water, soft spots, or dry areas.

PART 2 - PRODUCTS

2.1 CONCRETE, GENERAL

- A. ACI Publications: Comply with the following unless modified by requirements in the Contract Documents:
 - 1. ACI 301.
 - 2. ACI 117.
 - 3. ACI 350.
 - 4. ACI 308.

2.2 FORM-FACING MATERIALS

- A. Smooth-Formed Finished Concrete: Form-facing panels that provide continuous, true, and smooth concrete surfaces. Furnish in largest practicable sizes to minimize number of joints.
 - 1. Plywood, metal, or other approved panel materials.
 - 2. Exterior-grade plywood panels, suitable for concrete forms, complying with DOC PS 1, and as follows:
 - a. High-density overlay, Class 1 or better.
 - b. B-B (Concrete Form), Class 1 or better; mill oiled and edge sealed.
 - 3. Overlaid Finnish birch plywood.
- B. Rough-Formed Finished Concrete: Plywood, lumber, metal, or another approved material. Provide lumber dressed on at least two edges and one side for tight fit.
- C. Forms for Cylindrical Columns, Pedestals, and Supports: Metal, glass-fiber-reinforced plastic, paper, or fiber tubes that produce surfaces with gradual or abrupt irregularities not exceeding specified formwork surface class. Provide units with sufficient wall thickness to resist plastic concrete loads without detrimental deformation.

- D. Pan-Type Forms: Glass-fiber-reinforced plastic or formed steel, stiffened to resist plastic concrete loads without detrimental deformation.
- E. Void (Carton) Forms: Biodegradable paper surface, treated for moisture resistance, structurally sufficient to support weight of plastic concrete and other superimposed loads.
- F. Chamfer Strips: Wood, metal, PVC, or rubber strips, 3/4 by 3/4 inch, minimum.
- G. Rustication Strips: Wood, metal, PVC, or rubber strips, kerfed for ease of form removal.
- H. Form-Release Agent: Commercially formulated (maximum VOC content of 350 mg/L) formrelease agent that does not bond with, stain, or adversely affect concrete surfaces and does not impair subsequent treatments of concrete surfaces.
 - 1. Formulate form-release agent with rust inhibitor for steel form-facing materials.
- I. Form Ties: Factory-fabricated, removable or snap-off glass-fiber-reinforced plastic or metal form ties designed to resist lateral pressure of fresh concrete on forms and to prevent spalling of concrete on removal.
 - 1. Furnish ties that, when removed, leave holes no larger than 1 inch in diameter in concrete surface.

2.3 STEEL REINFORCEMENT

- A. Reinforcing Bars: ASTM A 615, Grade 60, deformed.
- B. Steel Bar Mats: ASTM A 184, fabricated from ASTM A 615, Grade 60, deformed bars, assembled with clips.
- C. Plain-Steel Wire: ASTM A 1064, as drawn.
- D. Deformed-Steel Wire: ASTM A 1064.
- E. Plain-Steel Welded-Wire Reinforcement: ASTM A 1064, plain, fabricated from as-drawn steel wire into flat sheets.
- F. Deformed-Steel Welded-Wire Reinforcement: ASTM A 1064, flat sheet.
- G. Galvanized-Steel Welded-Wire Reinforcement: ASTM A 1064, plain, fabricated from galvanized-steel wire into flat sheets.

2.4 REINFORCEMENT ACCESSORIES

- A. Joint Dowel Bars: ASTM A 615, Grade 60, plain-steel bars, cut true to length with ends square and free of burrs.
- B. Zinc Repair Material: ASTM A 780.

GOODWYN MILLS CAWOOD, LLC GMC PROJECT NO. CATL230033

- C. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded-wire reinforcement in place. Manufacture bar supports from steel wire, plastic, or precast concrete according to CRSI's "Manual of Standard Practice," of greater compressive strength than concrete and as follows:
 - 1. For concrete surfaces exposed to view, where legs of wire bar supports contact forms, use CRSI Class 1 plastic-protected steel wire or CRSI Class 2 stainless-steel bar supports.
 - 2. For slabs-on-grade, use supports with sand plates or horizontal runners where base material will not support chair legs.

2.5 CONCRETE MATERIALS

- A. Source Limitations: Obtain each type or class of cementitious material of the same brand from the same manufacturer's plant, obtain aggregate from single source, and obtain admixtures from single source from single manufacturer.
- B. Cementitious Materials:
 - 1. Portland Cement: ASTM C 150, Type I or Type II.
 - a. The cement shall be low alkali, less than 0.60 percent. All cement used in concrete that will be in contact with wastewater shall have a tricalcium aluminate $(Ca_3Al_2O_6)$ content of less than 8 percent.
 - b. Use one brand of cement throughout the Project unless otherwise acceptable to the Engineer.
 - 2. Fly Ash: ASTM C 618, Class F or C.
- C. Normal-Weight Aggregates: ASTM C 33, coarse aggregate or better, graded. Provide aggregates from a single source with documented service record data of at least 10 years' satisfactory service in similar applications and service conditions using similar aggregates and cementitious materials. Normal weight river gravel and natural sand are acceptable for use as aggregate materials in concrete. All normal weight aggregates shall conform to ASTM C33.
 - 1. Maximum Coarse-Aggregate Size: 1-1/2 inches nominal.
- D. Lightweight Aggregate: ASTM C 330, 1-inch-nominal maximum aggregate size.
- E. Air-Entraining Admixture: ASTM C 260.
- F. Chemical Admixtures: Certified by manufacturer to be compatible with other admixtures and that do not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride.
 - 1. Water-Reducing Admixture: ASTM C 494, Type A.
 - 2. Retarding Admixture: ASTM C 494, Type B.
 - 3. Water-Reducing and Retarding Admixture: ASTM C 494, Type D.
 - 4. High-Range, Water-Reducing Admixture: ASTM C 494, Type F.
 - 5. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494, Type G.
 - 6. Plasticizing and Retarding Admixture: ASTM C 1017, Type II.

G. Water: ASTM C 94 and potable.

2.6 FIBER REINFORCEMENT

- A. Synthetic Micro-Fiber: Monofilament polypropylene micro-fibers engineered and designed for use in concrete, complying with ASTM C 1116, Type III, 1/2 to 1-1/2 inches long.
- B. Synthetic Micro-Fiber: Fibrillated polypropylene micro-fibers engineered and designed for use in concrete, complying with ASTM C 1116, Type III, 1/2 to 1-1/2 inches long.

2.7 WATERSTOPS

- A. Flexible Rubber Waterstops: CE CRD-C 513, for embedding in concrete to prevent passage of fluids through joints, factory fabricated corners, intersections, and directional changes.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by the following:
 - a. Sika Greenstreak
 - b. Williams Products, Inc.
 - c. JP Specialties, Inc.
 - d. Or approved equal.
 - 2. Profile: Ribbed with center bulb and/or Ribbed without center bulb.
 - 3. Dimensions: 6 inches by 3/8 inch thick; nontapered.
- B. Flexible PVC Waterstops: CE CRD-C 572, for embedding in concrete to prevent passage of fluids through joints, factory fabricated corners, intersections, and directional changes.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. BoMetals, Inc.
 - b. Sika Greenstreak.
 - c. JP Specialties, Inc.
 - d. Or approved equal.
 - 2. Profile: Ribbed with center bulb and/or Ribbed without center bulb.
 - 3. Dimensions: 6 inches by 3/8 inch thick; nontapered.
- C. Self-Expanding Butyl Strip Waterstops: Manufactured rectangular or trapezoidal strip, butyl rubber with sodium bentonite or other hydrophilic polymers, for adhesive bonding to concrete, 3/4 by 1 inch.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Barrier-Bac; Inteplast Group, Ltd.
 - b. JP Specialties, Inc.

- c. Sika Greenstreak.
- d. Or approved equal.
- D. Self-Expanding Rubber Strip Waterstops: Manufactured rectangular or trapezoidal strip, bentonite-free hydrophilic polymer-modified chloroprene rubber, for adhesive bonding to concrete, 3/8 by 3/4 inch.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Adeka Ultra Seal/OCM, Inc.
 - b. Sika Greenstreak.
 - c. Or approved equal.

2.8 VAPOR RETARDERS

A. Sheet Vapor Retarder: Polyethylene sheet, ASTM D 4397, not less than 10 mils thick.

2.9 CURING MATERIALS

- A. Evaporation Retarder: Waterborne, monomolecular film forming, manufactured for application to fresh concrete.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. BASF Corporation; Construction Systems.
 - b. Euclid Chemical Company (The); an RPM company.
 - c. Kaufman Products, Inc.
 - d. Sika Corporation.
 - e. SpecChem, LLC.
 - f. Or approved equal.
- B. Absorptive Cover: AASHTO M 182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. when dry.
- C. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.
- D. Water: Potable.
- E. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, dissipating.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. BASF Corporation; Construction Systems.
 - b. Euclid Chemical Company (The); an RPM company.
 - c. W. R. Meadows, Inc.

- d. Or approved equal.
- F. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, nondissipating, certified by curing compound manufacturer to not interfere with bonding of floor covering.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. BASF Corporation; Construction Systems.
 - b. Euclid Chemical Company (The); an RPM company.
 - c. L&M Construction Chemicals, Inc.
 - d. TK Products.
 - e. Or approved equal.
- G. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, 18 to 25 percent solids, nondissipating, certified by curing compound manufacturer to not interfere with bonding of floor covering.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. BASF Corporation; Construction Systems.
 - b. Dayton Superior.
 - c. Euclid Chemical Company (The); an RPM company.
 - d. L&M Construction Chemicals, Inc.
 - e. W. R. Meadows, Inc.
 - f. Or approved equal.
- H. Clear, Solvent-Borne, Membrane-Forming Curing and Sealing Compound: ASTM C 1315, Type 1, Class A.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. BASF Corporation; Construction Systems.
 - b. Dayton Superior.
 - c. Euclid Chemical Company (The); an RPM company.
 - d. L&M Construction Chemicals, Inc.
 - e. W. R. Meadows, Inc.
 - f. Or approved equal.
- I. Clear, Waterborne, Membrane-Forming Curing and Sealing Compound: ASTM C 1315, Type 1, Class A.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Dayton Superior.
 - b. Euclid Chemical Company (The); an RPM company.
 - c. L&M Construction Chemicals, Inc.

- d. W. R. Meadows, Inc.
- e. Or approved equal.

2.10 RELATED MATERIALS

- A. Expansion- and Isolation-Joint-Filler Strips: ASTM D 1751, asphalt-saturated cellulosic fiber.
- B. Semirigid Joint Filler: Two-component, semirigid, 100 percent solids, epoxy resin with a Type A shore durometer hardness of 80 according to ASTM D 2240.
- C. Bonding Agent: ASTM C 1059, Type II, nonredispersible, acrylic emulsion or styrene butadiene.
- D. Epoxy Bonding Adhesive: ASTM C 881, two-component epoxy resin, capable of humid curing and bonding to damp surfaces, of class suitable for application temperature and of grade to suit requirements, and as follows:
 - 1. Types I and II, nonload bearing or Types IV and V, load bearing, for bonding hardened or freshly mixed concrete to hardened concrete.
- E. Reglets: Fabricate reglets of not less than 0.022-inch-thick, galvanized-steel sheet. Temporarily fill or cover face opening of reglet to prevent intrusion of concrete or debris.
- F. Dovetail Anchor Slots: Hot-dip galvanized-steel sheet, not less than 0.034 inch thick, with bent tab anchors. Temporarily fill or cover face opening of slots to prevent intrusion of concrete or debris.

2.11 REPAIR MATERIALS

- A. Repair Overlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/4 inch and that can be filled in over a scarified surface to match adjacent floor elevations.
 - 1. Cement Binder: ASTM C 150, portland cement or hydraulic or blended hydraulic cement as defined in ASTM C 219.
 - 2. Primer: Product of topping manufacturer recommended for substrate, conditions, and application.
 - 3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch or coarse sand as recommended by topping manufacturer.
 - 4. Compressive Strength: Not less than 5000 psi at 28 days when tested according to ASTM C 109.

2.12 CONCRETE MIXTURES, GENERAL

A. Prepare design mixtures for each type and strength of concrete, proportioned on the basis of laboratory trial mixture or field test data, or both, according to ACI 301.

GROVE CREEK

2.0 MGD WPCP

- 1. Use a qualified independent testing agency for preparing and reporting proposed mixture designs based on laboratory trial mixtures.
- B. Cementitious Materials: Limit percentage, by weight, of cementitious materials other than portland cement in concrete as follows:
 - 1. Fly Ash: 25 percent.
 - 2. Combined Fly Ash and Pozzolan: 25 percent.
 - 3. Slag Cement: 50 percent.
 - 4. Combined Fly Ash or Pozzolan and Slag Cement: 50 percent portland cement minimum, with fly ash or pozzolan not exceeding 25 percent.
 - 5. Silica Fume: 10 percent.
 - 6. Combined Fly Ash, Pozzolans, and Silica Fume: 35 percent with fly ash or pozzolans not exceeding 25 percent and silica fume not exceeding 10 percent.
 - 7. Combined Fly Ash or Pozzolans, Slag Cement, and Silica Fume: 50 percent with fly ash or pozzolans not exceeding 25 percent and silica fume not exceeding 10 percent.
- C. Limit water-soluble, chloride-ion content in hardened concrete to 0.10 percent by weight of cement.
- D. Admixtures: Use admixtures according to manufacturer's written instructions.
 - 1. Use water-reducing, high-range water-reducing or plasticizing admixture in concrete, as required, for placement and workability.
 - 2. Use water-reducing and -retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
 - 3. Use water-reducing admixture in pumped concrete, concrete for heavy-use industrial slabs and parking structure slabs, concrete required to be watertight, and concrete with a w/c ratio below 0.50.

2.13 CONCRETE MIXTURES FOR BUILDING ELEMENTS

- A. Footings: Normal-weight concrete.
 - 1. Minimum Compressive Strength: -As indicated in Structural General Notes at 28 days.
 - 2. Maximum W/C Ratio: 0.55.
 - 3. Slump Limit: 3 inches. 8 inches for concrete with verified slump of 2 to 4 inches before adding high-range water-reducing admixture or plasticizing admixture, plus or minus 1 inch.
 - 4. Air Content: 5.5 percent, plus or minus 1.5 percent at point of delivery for 1-1/2-inch nominal maximum aggregate size.
 - 5. Air Content: 6 percent, plus or minus 1.5 percent at point of delivery for 1-inch nominal maximum aggregate size.
- B. Foundation Walls: Normal-weight concrete.
 - 1. Minimum Compressive Strength: As indicated in Structural General Notes at 28 days.
 - 2. Maximum W/C Ratio: 0.50

- 3. Slump Limit: 3 inches. 8 inches for concrete with verified slump of 2 to 4 inches before adding high-range water-reducing admixture or plasticizing admixture plus or minus 1 inch.
- 4. Air Content: 5.5 percent, plus or minus 1.5 percent at point of delivery for 1-1/2-inch nominal maximum aggregate size.
- 5. Air Content: 6 percent, plus or minus 1.5 percent at point of delivery for 1-inch nominal maximum aggregate size.
- C. Slabs-on-Grade: Normal-weight concrete.
 - 1. Minimum Compressive Strength: As indicated in Structural General Notes at 28 days.
 - 2. Maximum W/C Ratio: 0.50
 - 3. Minimum Cementitious Materials Content: 470 lb/cu. yd.
 - 4. Slump Limit: 3 inches, plus or minus 1 inch.
 - 5. Air Content: 5.5 percent, plus or minus 1.5 percent at point of delivery for 1-1/2-inch nominal maximum aggregate size.
 - 6. Air Content: 6 percent, plus or minus 1.5 percent at point of delivery for 1-inch nominal maximum aggregate size.
 - 7. Air Content: Do not allow air content of trowel-finished floors to exceed 3 percent.
 - 8. Maximum W/C Ratio: 0.50.
- D. Suspended Slabs: Normal-weight concrete.
 - 1. Minimum Compressive Strength: As indicated in Structural General Notes at 28 days.
 - 2. Maximum W/C Ratio: 0.50.
 - 3. Minimum Cementitious Materials Content: 470 lb/cu. yd.
 - 4. Slump Limit: 3 inches, plus or minus 1 inch.
 - 5. Air Content: 4 percent, plus or minus 1.5 percent at point of delivery for 1-1/2-inch nominal maximum aggregate size.
 - 6. Air Content: -4.5 percent, plus or minus 1.5 percent at point of delivery for 1-inch nominal maximum aggregate size.
 - 7. Air Content: Do not allow air content of trowel-finished floors to exceed 3 percent.
 - 8. Maximum W/C Ratio: 0.50.
- E. Water Retaining Structures.
 - 1. Minimum Compressive Strength: As indicated in Structural General Notes at 28 days.
 - 2. Maximum W/C Ratio: 0.45.
 - 3. Minimum Cementitious Materials Content: 535 lb/cu. yd.
 - 4. Slump Limit: 4 inches, plus or minus 1 inch.
 - 5. Air Content: 4.5 percent, plus or minus 1.5 percent at point of delivery for 1-1/2-inch nominal maximum aggregate size.
 - 6. Air Content: 4.5 percent, plus or minus 1.5 percent at point of delivery for 1-inch nominal maximum aggregate size.
- F. Concrete Toppings: Normal-weight concrete.
 - 1. Minimum Compressive Strength: As indicated in Structural General Notes at 28 days.
 - 2. Minimum Cementitious Materials Content: 600 lb/cu. yd.
 - 3. Slump Limit: 3 inches, plus or minus 1 inch.

- 4. Air Content: 5.5 percent, plus or minus 1.5 percent at point of delivery for 1-1/2-inch nominal maximum aggregate size.
- 5. Air Content: Do not allow air content of trowel-finished toppings to exceed 3 percent.
- 6. Steel-Fiber Reinforcement: Add to concrete mixture, according to manufacturer's written instructions, at a rate of 50 lb/cu. yd.
- 7. Synthetic Micro-Fiber: Uniformly disperse in concrete mixture at manufacturer's recommended rate, but not less than a rate of 1.5 lb/cu. yd.
- G. Building Frame Members: Normal-weight concrete.
 - 1. Minimum Compressive Strength: As indicated in Structural General Notes at 28 days.
 - 2. Maximum W/C Ratio: 0.50.
 - 3. Slump Limit: 4 inches. 8 inches for concrete with verified slump of 2 to 4 inches before adding high-range water-reducing admixture or plasticizing admixture, plus or minus 1 inch.
 - 4. Air Content: 4.5 percent, plus or minus 1.5 percent at point of delivery for 1-1/2-inch nominal maximum aggregate size.
- H. Building Walls: Normal-weight concrete.
 - 1. Minimum Compressive Strength: As indicated in Structural General Notes at 28 days.
 - 2. Maximum W/C Ratio: 0.50.
 - 3. Slump Limit: 4 inches. 8 inches for concrete with verified slump of 2 to 4 inches before adding high-range water-reducing admixture or plasticizing admixture, plus or minus 1 inch.
 - 4. Air Content: 5.5 percent, plus or minus 1.5 percent at point of delivery for 1-1/2-inch nominal maximum aggregate size.

2.14 FABRICATING REINFORCEMENT

A. Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice."

2.15 CONCRETE MIXING

- A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94 and ASTM C 1116, and furnish batch ticket information.
 - 1. When air temperature is between 85 and 90 °F, reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 °F, reduce mixing and delivery time to 60 minutes.
- B. Project-Site Mixing: Measure, batch, and mix concrete materials and concrete according to ASTM C 94. Mix concrete materials in appropriate drum-type batch machine mixer.
 - 1. For mixer capacity of 1 cu. yd. or smaller, continue mixing at least 1-1/2 minutes, but not more than 5 minutes after ingredients are in mixer, before any part of batch is released.
 - 2. For mixer capacity larger than 1 cu. yd., increase mixing time by 15 seconds for each additional 1 cu. yd.

3. Provide batch ticket for each batch discharged and used in the Work, indicating Project identification name and number, date, mixture type, mixture time, quantity, and amount of water added. Record approximate location of final deposit in structure.

PART 3 - EXECUTION

3.1 FORMWORK INSTALLATION

- A. Design, erect, shore, brace, and maintain formwork, according to ACI 301, to support vertical, lateral, static, and dynamic loads, and construction loads that might be applied, until structure can support such loads.
- B. Construct formwork so concrete members and structures are of size, shape, alignment, elevation, and position indicated, within tolerance limits of ACI 117.
- C. Limit concrete surface irregularities, designated by ACI 347 as abrupt or gradual, as follows:
 - 1. Class A, 1/8 inch for smooth-formed finished surfaces.
 - 2. Class B, 1/4 inch for rough-formed finished surfaces.
- D. Construct forms tight enough to prevent loss of concrete mortar.
- E. Construct forms for easy removal without hammering or prying against concrete surfaces. Provide crush or wrecking plates where stripping may damage cast-concrete surfaces. Provide top forms for inclined surfaces steeper than 1.5 horizontal to 1 vertical.
 - 1. Install keyways, reglets, recesses, and the like, for easy removal.
 - 2. Do not use rust-stained steel form-facing material.
- F. Set edge forms, bulkheads, and intermediate screed strips for slabs to achieve required elevations and slopes in finished concrete surfaces. Provide and secure units to support screed strips; use strike-off templates or compacting-type screeds.
- G. Provide temporary openings for cleanouts and inspection ports where interior area of formwork is inaccessible. Close openings with panels tightly fitted to forms and securely braced to prevent loss of concrete mortar. Locate temporary openings in forms at inconspicuous locations.
- H. Chamfer exterior corners and edges of permanently exposed concrete.
- I. Form openings, chases, offsets, sinkages, keyways, reglets, blocking, screeds, and bulkheads required in the Work. Determine sizes and locations from trades providing such items.
- J. Clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt, and other debris just before placing concrete.
- K. Retighten forms and bracing before placing concrete, as required, to prevent mortar leaks and maintain proper alignment.

CITY OF COMMERCE COMMERCE, GA

L. Coat contact surfaces of forms with form-release agent, according to manufacturer's written instructions, before placing reinforcement.

3.2 EMBEDDED ITEM INSTALLATION

- A. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 1. Install anchor rods, accurately located, to elevations required and complying with tolerances in Section 7.5 of AISC 303.

3.3 REMOVING AND REUSING FORMS

- A. General: Formwork for sides of beams, walls, columns, and similar parts of the Work that does not support weight of concrete may be removed after cumulatively curing at not less than 50 °F for 48 hours after placing concrete with a 72 hour pour back for adjacent pours. Concrete has to be hard enough to not be damaged by form-removal operations, and curing and protection operations need to be maintained.
 - 1. Leave formwork for beam soffits, joists, slabs, and other structural elements that support weight of concrete in place until concrete has achieved at least 70 percent of its 28-day design compressive strength.
 - 2. Remove forms only if shores have been arranged to permit removal of forms without loosening or disturbing shores.
- B. Clean and repair surfaces of forms to be reused in the Work. Split, frayed, delaminated, or otherwise damaged form-facing material are not acceptable for exposed surfaces. Apply new form-release agent.
- C. When forms are reused, clean surfaces, remove fins and laitance, and tighten to close joints. Align and secure joints to avoid offsets. Do not use patched forms for exposed concrete surfaces unless approved by Engineer.

3.4 SHORING AND RESHORING INSTALLATION

- A. Comply with ACI 318 and ACI 301 for design, installation, and removal of shoring and reshoring.
 - 1. Do not remove shoring or reshoring until measurement of slab tolerances is complete.
- B. In multistory construction, extend shoring or reshoring over a sufficient number of stories to distribute loads in such a manner that no floor or member will be excessively loaded or will induce tensile stress in concrete members without sufficient steel reinforcement.
- C. Plan sequence of removal of shores and reshore to avoid damage to concrete. Locate and provide adequate reshoring to support construction without excessive stress or deflection.

GROVE CREEK

2.0 MGD WPCP

3.5 VAPOR-RETARDER INSTALLATION

- A. Sheet Vapor Retarders: Place, protect, and repair sheet vapor retarder according to ASTM E 1643 and manufacturer's written instructions.
 - 1. Lap joints 6 inches and seal with manufacturer's recommended tape.
- B. Bituminous Vapor Retarders: Place, protect, and repair bituminous vapor retarder according to manufacturer's written instructions.

3.6 STEEL REINFORCEMENT INSTALLATION

- A. General: Comply with CRSI's "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.
 - 1. Do not cut or puncture vapor retarder. Repair damage and reseal vapor retarder before placing concrete.
- B. Clean reinforcement of loose rust and mill scale, earth, ice, and other foreign materials that reduce bond to concrete.
- C. Accurately position, support, and secure reinforcement against displacement. Locate and support reinforcement with bar supports to maintain minimum concrete cover. Do not tack weld crossing reinforcing bars.
- D. Set wire ties with ends directed into concrete, not toward exposed concrete surfaces.
- E. Install welded-wire reinforcement in longest practicable lengths on bar supports spaced to minimize sagging. Lap edges and ends of adjoining sheets at least one mesh spacing. Offset laps of adjoining sheet widths to prevent continuous laps in either direction. Lace overlaps with wire.

3.7 JOINTS

- A. General: Construct joints true to line with faces perpendicular to surface plane of concrete.
- B. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Engineer.
 - 1. Place joints perpendicular to main reinforcement. Continue reinforcement across construction joints unless otherwise indicated. Do not continue reinforcement through sides of strip placements of floors and slabs.
 - 2. Form keyed joints as indicated. Embed keys at least 1-1/2 inches into concrete.
 - 3. Locate joints for beams, slabs, joists, and girders in the middle third of spans. Offset joints in girders a minimum distance of twice the beam width from a beam-girder intersection.
 - 4. Locate horizontal joints in walls and columns at underside of floors, slabs, beams, and girders and at the top of footings or floor slabs.

CITY OF COMMERCE COMMERCE, GA

- 5. Space vertical joints in walls as indicated on Contractor's submitted and approved construction joint layout. Locate joints beside piers integral with walls, near corners, and in concealed locations where possible.
- 6. Use a bonding agent at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
- C. Contraction Joints in Slabs-on-Grade: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of concrete thickness as follows:
 - 1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint to a radius of 1/8 inch. Repeat grooving of contraction joints after applying surface finishes. Eliminate groover tool marks on concrete surfaces.
 - 2. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch-wide joints into concrete as soon as cutting action does not tear, abrade, or otherwise damage surface and before concrete develops random contraction cracks.
- D. Isolation Joints in Slabs-on-Grade: After removing formwork, install joint-filler strips at slab junctions with vertical surfaces, such as column pedestals, foundation walls, grade beams, and other locations, as indicated.
 - 1. Extend joint-filler strips full width and depth of joint, terminating flush with finished concrete surface unless otherwise indicated.
 - 2. Install joint-filler strips in lengths as long as practicable. Where more than one length is required, lace or clip sections together.
- E. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or asphalt coat one-half of dowel length to prevent concrete bonding to one side of joint.

3.8 WATERSTOP INSTALLATION

A. Flexible Waterstops: Install in construction joints and at other joints indicated to form a continuous diaphragm. Install in longest lengths practicable. Support and protect exposed waterstops during progress of the Work. Field fabricated joints in waterstops according to manufacturer's written instructions.

3.9 CONCRETE PLACEMENT

- A. Before placing concrete, verify that installation of formwork, reinforcement, and embedded items is complete and that required inspections are completed.
- B. Do not add water to concrete during delivery, at Project site, or during placement unless approved by Engineer.
- C. Before test sampling and placing concrete, water may be added at Project site, subject to limitations of ACI 301.

GROVE CREEK

2.0 MGD WPCP

- 1. Do not add water to concrete after adding high-range water-reducing admixtures to mixture.
- D. Deposit concrete continuously in one layer or in horizontal layers of such thickness that no new concrete is placed on concrete that has hardened enough to cause seams or planes of weakness. If a section cannot be placed continuously, provide construction joints as indicated. Deposit concrete to avoid segregation.
 - 1. Deposit concrete in horizontal layers of depth not to exceed formwork design pressures and in a manner to avoid inclined construction joints.
 - 2. Consolidate placed concrete with mechanical vibrating equipment according to ACI 301.
 - 3. Do not use vibrators to transport concrete inside forms. Insert and withdraw vibrators vertically at uniformly spaced locations to rapidly penetrate placed layer and at least 6 inches into preceding layer. Do not insert vibrators into lower layers of concrete that have begun to lose plasticity. At each insertion, limit duration of vibration to time necessary to consolidate concrete and complete embedment of reinforcement and other embedded items without causing mixture constituents to segregate.
- E. Deposit and consolidate concrete for floors and slabs in a continuous operation, within limits of construction joints, until placement of a panel or section is complete.
 - 1. Consolidate concrete during placement operations, so concrete is thoroughly worked around reinforcement and other embedded items and into corners.
 - 2. Maintain reinforcement in position on chairs during concrete placement.
 - 3. Screed slab surfaces with a straightedge and strike off to correct elevations.
 - 4. Slope surfaces uniformly to drains where required.
 - 5. Begin initial floating using bull floats or darbies to form a uniform and open-textured surface plane, before excess bleedwater appears on the surface. Do not further disturb slab surfaces before starting finishing operations.

3.10 FINISHING FORMED SURFACES

- A. Rough-Formed Finish: Provide a rough-formed finish on formed concrete surfaces not exposed to view in the finished Work or concealed by other construction. This is the concrete surface having texture imparted by form-facing material used, with the holes and defective areas repaired and patched, and fins and other projections exceeding 1/4 inch in height rubbed down or chipped off.
- B. Smooth-Formed Finish: Provide a smooth-formed finish on formed concrete surfaces exposed to view or to be covered with a coating material applied directly to concrete, or a covering material applied directly to concrete, such as waterproofing, dampproofing, veneer plaster, painting, or another similar system. This is an as-cast concrete surface obtained with selected form-facing material, arranged in an orderly and symmetrical manner with a minimum of seams. Repair and patch defective areas with fins and other projections completely removed and smoothed.
- C. Smooth Rubbed Finish: Apply the following to smooth-formed-finished as-cast concrete where indicated:
 - 1. Perform no later than one day after form removal.

- 2. Moisten concrete surfaces and rub with carborundum brick or another abrasive until producing a uniform color and texture.
- 3. If sufficient cement paste cannot be drawn from the concrete by the rubbing process, use a grout made from the same cementitious materials used in the in-place concrete.
- 4. Smooth-Rubbed Finish: Apply to the top of exposed concrete walls and the outside exposed face to 1' below grade on all new concrete structures and new concrete additions.
- D. Grout Cleaned Finish: Provide grout-cleaned finish on scheduled concrete surfaces that have received smooth-formed finish treatment.
 - 1. Combine 1 part Portland cement to 1-1/2 parts fine sand by volume, complying with ASTM C144 or ASTM C404, and a 50:50 mixture of acrylic or styrene butadiene-based bonding admixture and water to form the consistency of thick paint. Blend standard Portland cement and white Portland cement in amounts determined by trial patches so that final color of dry grout will match adjacent surfaces.
 - 2. Thoroughly wet concrete surfaces, apply grout to coat surfaces, and fill small holes. Remove excess grout by scraping and rubbing with clean burlap. Keep damp by fog spray for at least 36 hours after rubbing.
- E. Related Unformed Surfaces: At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike off smooth and finish with a texture matching adjacent formed surfaces. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces unless otherwise indicated.

3.11 FINISHING FLOORS AND SLABS

- A. General: Comply with ACI 302.1R recommendations for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.
- B. Scratch Finish: Apply scratch finish to monolithic slab surfaces to receive concrete floor topping or mortar setting beds for tile, Portland cement terrazzo, and other bonded applied cementitious finish flooring material, and where indicated.
 - 1. After placing slabs, finish surface to tolerances of F(F) 15 (floor flatness) and F(L) 13 (floor levelness) measured according to ASTM E 1155. Slope surfaces uniformly to drains where required. After leveling, roughen surface before final set with stiff brushes, brooms, or rakes.
- C. Float Finish: Apply float finish to monolithic slab surfaces to receive trowel finish and other finishes as specified; slab surfaces to be covered with membrane or elastic waterproofing, membrane or elastic roofing, or sand-bed terrazzo; and where indicated.
 - 1. After screeding, consolidating, and leveling concrete slabs, do not work surface until ready for floating. Begin floating, using float blades or float shoes only, when surface water has disappeared, or when concrete has stiffened sufficiently to permit operation of power-driven floats, or both. Consolidate surface with power-driven floats or by hand-floating if area is small or inaccessible to power units. Finish surfaces to tolerances of F(F) 18 (floor flatness) and F(L) 15 (floor levelness) measured according to ASTM E 1155. Cut down high spots and fill low spots. Uniformly slope surfaces to drains. Immediately after leveling, refloat surface to a uniform, smooth, granular texture.

CITY OF COMMERCE COMMERCE, GA

- D. Trowel Finish: Apply a trowel finish to monolithic slab surfaces exposed to view and slab surfaces to be covered with resilient flooring, carpet, ceramic or quarry tile, paint, or another thin film-finish coating system.
 - 1. After floating, begin first trowel-finish operation using a power-driven trowel. Begin final troweling when surface produces a ringing sound as trowel is moved over surface. Consolidate concrete surface by final hand-troweling operation, free of trowel marks, uniform in texture and appearance, and finish surfaces to tolerances of F(F) 20 (floor flatness) and F(L) 17 (floor levelness) measured according to ASTM E 1155. Grind smooth any surface defects that would telegraph through applied floor covering system.
- E. Trowel and Fine Broom Finish: Where ceramic or quarry tile is to be installed with thin-set mortar, apply a trowel finish as specified, then immediately follow by slightly scarifying the surface with a fine broom.
- F. Nonslip Broom Finish: Apply a nonslip broom finish to exterior concrete platforms, steps, and ramps, and elsewhere as indicated.
 - 1. Immediately after float finishing, slightly roughen concrete surface by brooming with fiber-bristle broom perpendicular to main traffic route. Coordinate required final finish with Engineer before application.
- G. Nonslip Aggregate Finish: Apply nonslip aggregate finish to concrete stair treads, platforms, ramps, sloped walks, and where indicated.
 - 1. After completing float finishing and before starting trowel finish, uniformly spread 25 lb of dampened nonslip aggregate per 100 sq. ft. of surface. Tamp aggregate flush with surface using a steel trowel, but do not force below surface. After broadcasting and tamping, apply trowel finishing as specified.
 - 2. After curing, lightly work surface with a steel wire brush or an abrasive stone, and water to expose nonslip aggregate.

3.12 MISCELLANEOUS CONCRETE ITEM INSTALLATION

- A. Filling In: Fill in holes and openings left in concrete structures after work of other trades is in place unless otherwise indicated. Mix, place, and cure concrete, as specified, to blend with inplace construction. Provide other miscellaneous concrete filling indicated or required to complete the Work.
- B. Curbs: Provide monolithic finish to interior curbs by stripping forms while concrete is still green and by steel-troweling surfaces to a hard, dense finish with corners, intersections, and terminations slightly rounded.
- C. Equipment Bases and Foundations:
 - 1. Coordinate sizes and locations of concrete bases with actual equipment provided.
 - 2. Construct concrete bases 6 inches high unless otherwise indicated, and extend base not less than 6 inches in each direction beyond the maximum dimensions of supported equipment unless otherwise indicated or unless required for seismic anchor support.
 - 3. Minimum Compressive Strength: 4000 psi at 28 days.

- 4. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
- 5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete substrate.
- 6. Prior to pouring concrete, place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
- 7. Cast anchor-bolt insert into bases. Install anchor bolts to elevations required for proper attachment to supported equipment.
- D. Steel Pan Stairs: Provide concrete fill for steel pan stair treads, landings, and associated items. Cast-in inserts and accessories as shown on Drawings. Screed, tamp, and trowel finish concrete surfaces.

3.13 CONCRETE PROTECTING AND CURING

- A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 301 and ACI 306.1 for cold-weather protection and ACI 301 and ACI 305.1 for hot-weather protection during curing.
- B. Evaporation Retarder: Apply evaporation retarder to unformed concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.
- C. Formed Surfaces: Cure formed concrete surfaces, including underside of beams, supported slabs, and other similar surfaces. If forms remain during curing period, moist cure after loosening forms. If removing forms before end of curing period, continue curing for remainder of curing period.
- D. Unformed Surfaces: Begin curing immediately after finishing concrete. Cure unformed surfaces, including floors and slabs, concrete floor toppings, and other surfaces.
- E. Cure concrete according to ACI 308.1, by one or a combination of the following methods:
 - 1. Moisture Curing: Required for all water retaining structures. Keep surfaces continuously moist for not less than seven days with the following materials:
 - a. Water.
 - b. Continuous water-fog spray.
 - c. Absorptive cover, water saturated, and kept continuously wet. Cover concrete surfaces and edges with 12-inch lap over adjacent absorptive covers.
 - 2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period, using cover material and waterproof tape.
 - a. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive floor coverings.

- b. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive penetrating liquid floor treatments.
- c. Cure concrete surfaces to receive floor coverings with either a moisture-retaining cover or a curing compound that the manufacturer certifies does not interfere with bonding of floor covering used on Project.
- 3. Curing Compound: For non-liquid retaining structures and floors only. Comply with ASTM C171. Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.
 - a. Removal: After curing period has elapsed, remove curing compound without damaging concrete surfaces by method recommended by curing compound manufacturer unless manufacturer certifies in writing that the curing compound does not interfere with bonding of floor covering used on Project.
- 4. Curing and Sealing Compound: For non-liquid retaining structures and floors only. Comply with ASTM C171. Apply uniformly to floors and slabs indicated in a continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Repeat process 24 hours later and apply a second coat. Maintain continuity of coating and repair damage during curing period.

3.14 JOINT FILLING

- A. Prepare, clean, and install joint filler according to manufacturer's written instructions.
 - 1. Defer joint filling until concrete has aged at least three (3) month(s). Do not fill joints until construction traffic has permanently ceased.
- B. Remove dirt, debris, saw cuttings, curing compounds, and sealers from joints; leave contact faces of joints clean and dry.
- C. Install semi-rigid joint filler full depth in saw-cut joints and at least 2 inches deep in formed joints. Overfill joint and trim joint filler flush with top of joint after hardening.

3.15 CONCRETE SURFACE REPAIRS

- A. Defective Concrete: Repair and patch defective areas when approved by Engineer. Remove and replace concrete that cannot be repaired and patched to Engineer's approval.
- B. Patching Mortar: Mix dry-pack patching mortar, consisting of 1 part Portland cement to 2-1/2 parts fine aggregate passing a No. 16 sieve, using only enough water for handling and placing.
- C. Repairing Formed Surfaces: Surface defects include color and texture irregularities, cracks, spalls, air bubbles, honeycombs, rock pockets, fins and other projections on the surface, and stains and other discolorations that cannot be removed by cleaning.

- 1. Immediately after form removal, cut out honeycombs, rock pockets, and voids more than 1/2 inch in any dimension to solid concrete. Limit cut depth to 3/4 inch. Make edges of cuts perpendicular to concrete surface. Clean, dampen with water, and brush-coat holes and voids with bonding agent. Fill and compact with patching mortar before bonding agent has dried. Fill form-tie voids with patching mortar or cone plugs secured in place with bonding agent.
- 2. Repair defects on surfaces exposed to view by blending white Portland cement and standard Portland cement so that, when dry, patching mortar matches surrounding color. Patch a test area at inconspicuous locations to verify mixture and color match before proceeding with patching. Compact mortar in place and strike off slightly higher than surrounding surface.
- 3. Repair defects on concealed formed surfaces that affect concrete's durability and structural performance as determined by Engineer.
- D. Repairing Unformed Surfaces: Test unformed surfaces, such as floors and slabs, for finish and verify surface tolerances specified for each surface. Correct low and high areas. Test surfaces sloped to drain for trueness of slope and smoothness; use a sloped template.
 - 1. Repair finished surfaces containing defects. Surface defects include spalls, popouts, honeycombs, rock pockets, crazing and cracks in excess of 0.01 inch wide or that penetrate to reinforcement or completely through unreinforced sections regardless of width, and other objectionable conditions.
 - 2. After concrete has cured at least 14 days, correct high areas by grinding.
 - 3. Correct localized low areas during or immediately after completing surface finishing operations by cutting out low areas and replacing with patching mortar. Finish repaired areas to blend into adjacent concrete.
 - 4. Correct other low areas scheduled to receive floor coverings with a repair underlayment. Prepare, mix, and apply repair underlayment and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface. Feather edges to match adjacent floor elevations.
 - 5. Repair defective areas, except random cracks and single holes 1 inch or less in diameter, by cutting out and replacing with fresh concrete. Remove defective areas with clean, square cuts and expose steel reinforcement with at least a 3/4-inch clearance all around. Dampen concrete surfaces in contact with patching concrete and apply bonding agent. Mix patching concrete of same materials and mixture as original concrete, except without coarse aggregate. Place, compact, and finish blending with adjacent finished concrete. Cure in same manner as adjacent concrete.
 - 6. Repair random cracks and single holes 1 inch or less in diameter with patching mortar. Groove top of cracks and cut out holes to sound concrete and clean off dust, dirt, and loose particles. Dampen cleaned concrete surfaces and apply bonding agent. Place patching mortar before bonding agent has dried. Compact patching mortar and finish to match adjacent concrete. Keep patched area continuously moist for at least 72 hours.
- E. Perform structural repairs of concrete, subject to Engineer's approval, using epoxy adhesive and patching mortar.
- F. Repair materials and installation not specified above may be used, subject to Engineer's approval.

GROVE CREEK

2.0 MGD WPCP

3.16 FIELD QUALITY CONTROL

- A. Special Inspections: Owner will engage a-qualified testing and inspecting agency to perform field tests and inspections and prepare test reports.
- B. Testing Agency: Engage a qualified testing and inspecting agency to perform tests and inspections and to submit reports.
- C. Inspections:
 - 1. Steel reinforcement placement.
 - 2. Steel reinforcement welding.
 - 3. Headed bolts and studs.
 - 4. Concrete placement, including conveying and depositing.
 - 5. Curing procedures and maintenance of curing temperature.
- D. Concrete Tests: Testing of composite samples of fresh concrete obtained according to ASTM C 172 shall be performed according to the following requirements:
 - 1. Testing Frequency: Obtain one composite sample for each day's pour of each concrete mixture exceeding 5 cu. yd., but less than 25 cu. yd., plus one set for each additional 50 cu. yd. or fraction thereof.
 - a. When frequency of testing provides fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.
 - 2. Slump: ASTM C 143; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.
 - 3. Air Content: ASTM C 231, pressure method, for normal-weight concrete; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.
 - 4. Concrete Temperature: ASTM C 1064; one test hourly when air temperature is 40 °F and below or 80 °F and above, and one test for each composite sample.
 - 5. Compression Test Specimens: ASTM C 31.
 - a. Cast and laboratory cure two sets of two standard cylinder specimens for each composite sample.
 - b. Cast and field cure two sets of two standard cylinder specimens for each composite sample.
 - 6. Compressive-Strength Tests: ASTM C 39; test one set of two laboratory-cured specimens at 7 days and one set of two specimens at 28 days.
 - a. Test one set of two field-cured specimens at 7 days and one set of two specimens at 28 days.
 - b. A compressive-strength test shall be the average compressive strength from a set of two specimens obtained from same composite sample and tested at age indicated.

- 7. When strength of field-cured cylinders is less than 85 percent of companion laboratorycured cylinders, Contractor shall evaluate operations and provide corrective procedures for protecting and curing in-place concrete.
- 8. Strength of each concrete mixture will be satisfactory if every average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi.
- 9. Test results shall be reported in writing to Engineer, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.
- 10. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Engineer but will not be used as sole basis for approval or rejection of concrete.
- 11. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Engineer. Testing and inspecting agency may conduct tests to determine adequacy of concrete by cored cylinders complying with ASTM C 42 or by other methods as directed by Engineer.
- 12. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.
- 13. Correct deficiencies in the Work that test reports and inspections indicate do not comply with the Contract Documents.
- E. Measure floor and slab flatness and levelness according to ASTM E 1155 within 24 hours of finishing for laboratory and office buildings.
- F. For floors required for sloping, the slope must be within 1/16" tolerances of that required in the plans.

3.17 PROTECTION OF LIQUID FLOOR TREATMENTS

A. Protect liquid floor treatment from damage and wear during the remainder of construction period. Use protective methods and materials, including temporary covering, recommended in writing by liquid floor treatments installer.

3.18 WET TESTING

- A. General
 - 1. All new, water-retaining concrete structures shall be tested for water-tightness by the testing procedure described below and in accordance with ACI 350.1.
 - 2. All testing work shall be performed by the Contractor in the presence of the Engineer. The Engineer shall be notified at least five (5) days in advance of the time at which testing will be performed.
- B. Testing Water

- 1. Water for wet testing shall be furnished by the Contractor. The source of the water must be approved by the Engineer prior to filling of the structure. As a general rule, plant effluent water is acceptable for use as testing water; however, this must be confirmed by the Engineer.
- 2. Once testing is complete, testing water shall be disposed of in a manner acceptable to the Engineer and, unless otherwise permitted by the Engineer, shall not be allowed to enter other parts of the system.
- C. Test Equipment
 - 1. All temporary equipment needed for wet testing must be provided by the Contractor (e.g. connections between the structure to be tested and the water source, pumping equipment, metering devices, pressure or vacuum gauges, temporary flanges, valves, bulkheads, bracing, blocking, and other equipment that may be necessary to perform the testing).
 - 2. All temporary equipment shall be removed upon satisfactory completion of wet testing.
- D. Test Preparation
 - 1. Unless otherwise specified, wet testing shall be performed after installation of pipe sleeves and before placement of backfill, cleaning, disinfection, installation of process equipment, or any other activities that would hinder visual inspection of the structure during the test.
 - 2. Exposed concrete surfaces of the structure (including the floor) shall be cleaned of all foreign material and debris prior to the test. Standing water in or outside the structure that would interfere with the observation of the exposed concrete surfaces of the structure shall be removed. The concrete surfaces and concrete joints shall be thoroughly inspected for potential points of leakage, and those areas shall be repaired prior to filling the structure with water.
 - 3. Adjacent structures having common walls shall be tested individually at different times to allow examination of the dividing walls for leaks.
 - 4. Pipe connections or openings to structures, if not provided with drip tight valves, shall be temporarily plugged during testing. Where slide gates, sluice gates or similar devices are located, the Contractor shall provide bulkheads or the means to make them drip tight, and shall measure any leakage.
 - 5. Filling of the structure shall not begin before the designed compressive strength of all concrete elements of the structure has been reached or before fourteen (14) days after all concrete walls or base slabs have been placed.
- E. Test Procedure
 - 1. Soaking Period: Fill the unlined concrete structure to 1 foot above the maximum operating water surface level and maintain that water level for a minimum of 72 hours, to minimize absorption of water into the concrete during testing. Identify and repair all visible leaks during the soaking period.
 - 2. Testing Period: At the end of this soaking period, once all leaks have been repaired and the water level brought back to the required elevation, the testing period shall begin. Mark the water level with a weight suspended from a string and measure its elevation with a surveyor's level. Allow the structure to sit for a minimum of 48 hours. Following this period, identify and repair all visible leaks. Record and submit to the Engineer measurements of the water level at the beginning and end of the testing period.

- 3. Evaporation/Precipitation: During the testing period, suspend a bucket or pan in the structure and fill it halfway with testing water. Record and submit to the Engineer measurements of the water level at the beginning and end of the testing period, for use in accounting for any evaporation and precipitation that may have occurred during testing.
- F. Leakage
 - 1. Leakage requiring repair shall be defined as any moisture on the exterior surface of the structure, ranging from damp spots to dripping or trickling to shooting streams of water. All visible leakage is to be repaired even if magnitude is within allowable leakage.
 - 2. Allowable leakage: For unlined tanks with a side-water depth of 25 feet or less, the net loss of water volume (including evaporation/precipitation) shall not exceed 0.1 percent in 24 hours.
- G. Test Conclusion
 - 1. If the leakage observed during testing (including evaporation/precipitation) is less than the allowable leakage, the structure shall be considered sufficiently water-tight. If it is greater than the allowable, the structure shall be drained, necessary repairs shall be made, and the structure shall be re-tested.

END OF SECTION 03 30 00

SECTION 03 39 00 - CONCRETE CURING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes: Initial and final curing of horizontal and vertical concrete surfaces.
- B. Related Requirements
 - 1. Section 03 30 00 Cast-in-Place Concrete: Cast-in-place or in-situ concrete for structural building frames, slabs on fill or grade, and other concrete components associated with construction.

1.2 REFERENCE STANDARDS

- A. American Concrete Institute
 - 1. ACI 301 Specifications for Structural Concrete.
 - 2. ACI 302.1 Guide to Concrete Floor and Slab Construction.
 - 3. ACI 308.1 Specification for Curing Concrete.
 - 4. ACI 318 Building Code Requirements for Structural Concrete and Commentary.
 - 5. ACI 350 Code Requirements for Environmental Engineering Concrete Structures and Commentary
- B. ASTM International
 - 1. ASTM C171 Standard Specification for Sheet Materials for Curing Concrete.
 - 2. ASTM C309 Standard Specification for Liquid Membrane-Forming Compounds for Curing Concrete.
 - 3. ASTM C1315 Standard Specification for Liquid Membrane-Forming Compounds Having Special Properties for Curing and Sealing Concrete.
 - 4. ASTM D2103 Standard Specification for Polyethylene Film and Sheeting.

1.3 SUBMITTALS

- A. Section 01 33 00 Submittal Procedures: Requirements for submittals.
- B. Product Data: Submit manufacturer's information on curing compounds, mats, paper, and film, including compatibilities and limitations.
- C. Manufacturer's Certificate: Certify that products meet or exceed specified requirements.
- D. Manufacturer Instructions: Submit detailed instructions on installation requirements, including storage and handling procedures.
- E. Qualifications Statemen

GROVE CREEK

1. Submit qualifications for manufacturer.

1.4 QUALITY ASSURANCE

- A. Perform Work according to ACI 350.
- 1.5 QUALIFICATIONS
 - A. Manufacturer: Company specializing in manufacturing products specified in this Section with minimum three years' documented experience.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Section 01 60 00 Product Requirements: Requirements for transporting, handling, storing, and protecting products.
- B. Inspection: Accept materials on Site in manufacturer's original packaging and inspect for damage.
- C. Store materials according to manufacturer instructions.
- D. Protection:
 - 1. Protect materials from moisture and dust by storing in clean, dry location remote from construction operations areas.
 - 2. Provide additional protection according to manufacturer instructions.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Membrane-Curing Compound
 - 1. Description: Comply with ASTM C171.
- B. Water: Potable; not detrimental to concrete.

PART 3 - EXECUTION

- 3.1 EXAMINATION
 - A. Section 01 70 00 Execution and Closeout Requirements: Requirements for application examination.
 - B. Verify that substrate surfaces are ready to be cured.

GOODWYN MILLS CAWOOD, LLC GMC PROJECT NO. CATL230033

3.2 APPLICATION

- A. Horizontal Surfaces
 - 1. Comply with ACI 308.1, using Section 7 (Addition of Water: Water-Absorbent Materials); Section 3 (Moisture Retention: Liquid Membrane-Forming Curing Compounds).
 - 2. Absorptive Mat
 - a. Saturate burlap-PE and place burlap-side down over floor slab areas.
 - b. Lap ends and sides.
 - c. Maintain in place for seven days.
 - 3. Membrane-Curing Compound: Apply curing compound uniformly at the rate recommended by the manufacturer.
- B. Vertical Surfaces
 - 1. Comply with ACI 308.1, using Water Absorbent Materials method.
 - 2. Spraying: Spray water over surfaces and maintain wet for seven days.
 - 3. Membrane-Curing Compound: Apply compound uniformly at the rate recommended by the manufacturer.
- 3.3 **PROTECTION**
 - A. Section 01 70 00 Execution and Closeout Requirements: Requirements for protecting finished Work.
 - B. Do not permit traffic over unprotected floor surfaces.

3.4 ATTACHMENTS

- A. Liquid Retaining Structures
 - 1. Description: Absorptive mats.
 - 2. Type: Burlap-PE.
- B. Elevated Slabs
 - 1. Description: Membrane-curing compound.
 - 2. Type: Acrylic.
 - 3. Color: Clear.
- C. Concrete Pavement
 - 1. Description: Membrane-curing compound.
 - 2. Color: Opaque.
- D. Other Floor Areas

- Description: Membrane-curing compound. Type: Acrylic. 1.
- 2.
- Color: Translucent. 3.

END OF SECTION 03 39 00

SECTION 03 60 00 - GROUTING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Portland cement grout.
 - 2. Rapid-curing epoxy grout.
 - 3. Nonshrink cementitious grout.

B. Related Requirements:

1. Section 03 30 00 - Cast-in-Place Concrete: Cast-in-place or in-situ concrete for structural building frames, slabs on fill or grade, and other concrete components.

1.2 REFERENCE STANDARDS

- A. American Concrete Institute:
 - 1. ACI 301 Specifications for Structural Concrete for Buildings.
 - 2. ACI 318 Building Code Requirements for Structural Concrete.
 - 3. ACI 350 Code Requirements for Environmental Engineering Concrete Structures
- B. ASTM International:
 - 1. ASTM C33 Standard Specification for Concrete Aggregates.
 - 2. ASTM C40 Standard Test Method for Organic Impurities in Fine Aggregates for Concrete.
 - 3. ASTM C150 Standard Specification for Portland Cement.
 - 4. ASTM C191 Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle.
 - 5. ASTM C307 Standard Test Method for Tensile Strength of Chemical-Resistant Mortar, Grouts, and Monolithic Surfacings.
 - 6. ASTM C531 Standard Test Method for Linear Shrinkage and Coefficient of Thermal Expansion of Chemical-Resistant Mortars, Grouts, Monolithic Surfacings, and Polymer Concretes.
 - 7. ASTM C579 Standard Test Methods for Compressive Strength of Chemical-Resistant Mortars, Grouts, Monolithic Surfacings, and Polymer Concretes.
 - 8. ASTM C827 Standard Test Method for Change in Height at Early Ages of Cylindrical Specimens of Cementitious Mixtures.
- C. U. S. Army Corps of Engineers Concrete Research Division (CRD):
 - 1. CRD-C621 Non-Shrink Grout.

GROVE CREEK

2.0 MGD WPCP

1.3 SUBMITTALS

- A. Section 01 33 00 Submittal Procedures: Requirements for submittals.
- B. Product Data: Submit manufacturer information regarding grout.
- C. Manufacturer's Certificate: Certify that products meet or exceed specified requirements.
- D. Manufacturer Instructions: Submit instructions for mixing, handling, surface preparation, and placing epoxy-type and nonshrink grouts.
- E. Field Quality-Control Submittals: Indicate results of Contractor-furnished tests and inspections.

1.4 DELIVERY, STORAGE, AND HANDLING

- A. Section 01 60 00 Product Requirements: Requirements for transporting, handling, storing, and protecting products.
- B. Inspection: Accept materials on Site in manufacturer's original packaging and inspect for damage.
- C. Store materials according to manufacturer instructions.
- D. Protection:
 - 1. Protect materials from moisture and dust by storing in clean, dry location remote from construction operations areas.
 - 2. Provide additional protection according to manufacturer instructions.

1.5 AMBIENT CONDITIONS

- A. Section 01 50 00 Temporary Facilities and Controls: Requirements for ambient condition control facilities for product storage and installation.
- B. Maximum Conditions: Do not perform grouting if temperatures exceed manufacturer's recommendations.
- C. Minimum Conditions: Maintain minimum temperature per the manufacturer before, during, and after grouting, until grout has set.

PART 2 - PRODUCTS

2.1 PORTLAND CEMENT GROUT

- A. Portland Cement: Comply with ASTM C150, Type I and II.
- B. Water:
 - 1. Potable.

- 2. No impurities, suspended particles, algae, or dissolved natural salts in quantities capable of causing:
 - a. Corrosion of steel.
 - b. Volume change increasing shrinkage cracking.
 - c. Efflorescence.
 - d. Excess air entraining.
- C. Fine Aggregate:
 - 1. Washed natural sand.
 - 2. Gradation:
 - a. Comply with ASTM C33.
 - b. Represented by smooth granulometric curve within required limits.
 - 3. Free from injurious amounts of organic impurities according to ASTM C40.
- D. Mix:
 - 1. Portland cement, sand, and water.
 - 2. Do not use ferrous aggregate or staining ingredients in grout mixes.

2.2 RAPID-CURING EPOXY GROUT

- A. Manufacturers:
 - 1. L&M Construction Chemicals
 - 2. Sika Corporation
 - 3. WR Meadows
 - 4. Or Approved Equal
- B. Description:
 - 1. High-strength, three-component epoxy grout formulated with thermosetting resins and inert fillers.
 - 2. Rapid-curing, high adhesion, and resistant to ordinary chemicals, acids, and alkalis.
- C. Performance and Design Criteria:
 - 1. Compressive Strength:
 - a. 12,000 psi at seven days.
 - b. Comply with ASTM C579.
 - 2. Minimum Tensile Strength:
 - a. 2,000 psi.
 - b. Comply with ASTM C307.
 - 3. Coefficient of Expansion:

GOODWYN MILLS CAWOOD, LLC GMC PROJECT NO. CATL230033

- a. 30x10-6 inch per degree F.
- b. Comply with ASTM C531.
- 4. Shrinkage:
 - a. None.
 - b. Comply with ASTM C827.

2.3 NONSHRINK CEMENTITIOUS GROUT

- A. Manufacturers:
 - 1. Euclid Chemical Company
 - 2. Sika Corporation
 - 3. L&M Construction Chemicals
 - 4. Or Approved Equal
- B. Description:
 - 1. Pre-mixed and ready-for-use formulation requiring only addition of water.
 - 2. Nonshrink, non-corrosive, nonmetallic, non-gas forming, and no chlorides.
- C. Performance and Design Criteria:
 - 1. Certified to maintain initial placement volume or expand after set, and to meet following minimum properties when tested according to CRD-C621 for Type D nonshrink grout:
 - a. Setting Time:
 - 1) Initial: Approximately 2 hours.
 - 2) Final: Approximately 3 hours.
 - 3) Comply with ASTM C191.
 - b. Maximum Expansion: 0.10 to 0.40 percent.
 - c. Compressive Strength:
 - 1) One-Day: 4,000 psi.
 - 2) Seven-Day: 7,000 psi.
 - 3) 28-Day: 10,000 to 10,800 psi.
 - 4) Comply with CRD-C621.

2.4 FORMWORK

A. As specified in Section 03 30 00 – Cast-In-Place Concrete.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Section 01 70 00 Execution and Closeout Requirements: Requirements for installation examination.
- B. Verify areas to receive grout.

3.2 PREPARATION

- A. Section 01 70 00 Execution and Closeout Requirements: Requirements for installation preparation.
- B. Remove defective concrete, laitance, dirt, oil, grease, and other foreign material from concrete surfaces by brushing, hammering, chipping, or other similar means until sound and clean concrete surface is achieved.
- C. Roughen concrete lightly, but not to interfere with placement of grout.
- D. Remove foreign materials from metal surfaces in contact with grout.
- E. Align, level, and maintain final positioning of components to be grouted.
- F. Saturate concrete surfaces with clean water, and then remove excess water.

3.3 INSTALLATION

- A. Formwork:
 - 1. Construct leak proof forms anchored and shored to withstand grout pressures.
 - 2. Install formwork with clearances to permit proper placement of grout.
 - 3. As specified in Section 03 30 00 Cast-In-Place Concrete.
- B. Mixing:
 - 1. Portland Cement Grout:
 - a. Use proportions of two parts sand and one part cement, measured by volume.
 - b. Prepare grout with water to obtain consistency to permit placing and packing.
 - c. Mix water and grout in two steps:
 - 1) Pre-mix using approximately 2/3 of water.
 - 2) After partial mixing, add remaining water to bring mix to desired placement consistency and continue mixing two to three minutes.
 - d. Mix only quantities of grout capable of being placed within 30 minutes after mixing.
 - e. Do not add additional water after grout has been mixed.
 - f. Minimum Compressive Strength: 2,400 psi in 48 hours and 7,000 psi in 28 days.

GROVE CREEK

2.0 MGD WPCP

- 2. Rapid-Curing Epoxy Grout:
 - a. Mix and prepare according to manufacturer instructions.
 - b. Minimum Compressive Strength: 2,400 psi in 48 hours and 7,000 psi in 28 days.
- 3. Nonshrink Cementitious Grout:
 - a. Mix and prepare according to manufacturer instructions.
 - b. Minimum Compressive Strength: 2,400 psi in 48 hours and 7,000 psi in 28 days.
- 4. Mix grout components in proximity to Work area and transport mixture quickly and in manner not permitting segregation of materials.
- C. Placing of Grout:
 - 1. Place grout material quickly and continuously.
 - 2. Do not use pneumatic-pressure or dry-packing methods.
 - 3. Apply grout from one side only to avoid entrapping air.
 - 4. Do not vibrate placed grout mixture or permit placement if area is being vibrated by nearby equipment.
 - 5. Thoroughly compact final installation and eliminate air pockets.
 - 6. Do not remove leveling shims for at least 48 hours after grout has been placed.
- D. Curing:
 - 1. Prevent rapid loss of water from grout during first 48 hours by use of approved membrane curing compound or by using wet burlap method.
 - 2. Immediately after placement, protect grout from premature drying, excessively hot or cold temperatures, and mechanical injury.
 - 3. After grout has attained its initial set, keep damp for minimum three (3) days.

3.4 FIELD QUALITY CONTROL

- A. Inspection and Testing:
 - 1. Comply with ACI 301 and as specified in Section.
 - 2. Submit proposed mix design of each class of grout to Engineer for review prior to commencement of Work.
 - 3. Tests of grout components may be performed to ensure compliance with specified requirements.

END OF SECTION 03 60 00